Read Guns, Germs, and Steel: The Fates of Human Societies Page 47


  A SECOND EXTENSION will be to smaller geographic scales and shorter time scales than those of this book. For instance, the following obvious question has probably occurred to readers already: why, within Eurasia, were European societies, rather than those of the Fertile Crescent or China or India, the ones that colonized America and Australia, took the lead in technology, and became politically and economically dominant in the modern world? A historian who had lived at any time between 8500 B.C. and A.D. 1450, and who had tried then to predict future historical trajectories, would surely have labeled Europe’s eventual dominance as the least likely outcome, because Europe was the most backward of those three Old World regions for most of those 10,000 years. From 8500 B.C. until the rise of Greece and then Italy after 500 B.C., almost all major innovations in western Eurasia—animal domestication, plant domestication, writing, metallurgy, wheels, states, and so on—arose in or near the Fertile Crescent. Until the proliferation of water mills after about A.D. 900, Europe west or north of the Alps contributed nothing of significance to Old World technology or civilization; it was instead a recipient of developments from the eastern Mediterranean, Fertile Crescent, and China. Even from A.D. 1000 to 1450 the flow of science and technology was predominantly into Europe from the Islamic societies stretching from India to North Africa, rather than vice versa. During those same centuries China led the world in technology, having launched itself on food production nearly as early as the Fertile Crescent did.

  Why, then, did the Fertile Crescent and China eventually lose their enormous leads of thousands of years to late-starting Europe? One can, of course, point to proximate factors behind Europe’s rise: its development of a merchant class, capitalism, and patent protection for inventions, its failure to develop absolute despots and crushing taxation, and its Greco-Judeo-Christian tradition of critical empirical inquiry. Still, for all such proximate causes one must raise the question of ultimate cause: why did these proximate factors themselves arise in Europe, rather than in China or the Fertile Crescent?

  For the Fertile Crescent, the answer is clear. Once it had lost the head start that it had enjoyed thanks to its locally available concentration of domesticable wild plants and animals, the Fertile Crescent possessed no further compelling geographic advantages. The disappearance of that head start can be traced in detail, as the westward shift in powerful empires. After the rise of Fertile Crescent states in the fourth millennium B.C., the center of power initially remained in the Fertile Crescent, rotating between empires such as those of Babylon, the Hittites, Assyria, and Persia. With the Greek conquest of all advanced societies from Greece east to India under Alexander the Great in the late fourth century B.C., power finally made its first shift irrevocably westward. It shifted farther west with Rome’s conquest of Greece in the second century B.C., and after the fall of the Roman Empire it eventually moved again, to western and northern Europe.

  The major factor behind these shifts becomes obvious as soon as one compares the modern Fertile Crescent with ancient descriptions of it. Today, the expressions “Fertile Crescent” and “world leader in food production” are absurd. Large areas of the former Fertile Crescent are now desert, semidesert, steppe, or heavily eroded or salinized terrain unsuited for agriculture. Today’s ephemeral wealth of some of the region’s nations, based on the single nonrenewable resource of oil, conceals the region’s long-standing fundamental poverty and difficulty in feeding itself.

  In ancient times, however, much of the Fertile Crescent and eastern Mediterranean region, including Greece, was covered with forest. The region’s transformation from fertile woodland to eroded scrub or desert has been elucidated by paleobotanists and archaeologists. Its woodlands were cleared for agriculture, or cut to obtain construction timber, or burned as firewood or for manufacturing plaster. Because of low rainfall and hence low primary productivity (proportional to rainfall), regrowth of vegetation could not keep pace with its destruction, especially in the presence of overgrazing by abundant goats. With the tree and grass cover removed, erosion proceeded and valleys silted up, while irrigation agriculture in the low-rainfall environment led to salt accumulation. These processes, which began in the Neolithic era, continued into modern times. For instance, the last forests near the ancient Nabataean capital of Petra, in modern Jordan, were felled by the Ottoman Turks during construction of the Hejaz railroad just before World War I.

  Thus, Fertile Crescent and eastern Mediterranean societies had the misfortune to arise in an ecologically fragile environment. They committed ecological suicide by destroying their own resource base. Power shifted westward as each eastern Mediterranean society in turn undermined itself, beginning with the oldest societies, those in the east (the Fertile Crescent). Northern and western Europe has been spared this fate, not because its inhabitants have been wiser but because they have had the good luck to live in a more robust environment with higher rainfall, in which vegetation regrows quickly. Much of northern and western Europe is still able to support productive intensive agriculture today, 7,000 years after the arrival of food production. In effect, Europe received its crops, livestock, technology, and writing systems from the Fertile Crescent, which then gradually eliminated itself as a major center of power and innovation.

  That is how the Fertile Crescent lost its huge early lead over Europe. Why did China also lose its lead? Its falling behind is initially surprising, because China enjoyed undoubted advantages: a rise of food production nearly as early as in the Fertile Crescent; ecological diversity from North to South China and from the coast to the high mountains of the Tibetan plateau, giving rise to a diverse set of crops, animals, and technology; a large and productive expanse, nourishing the largest regional human population in the world; and an environment less dry or ecologically fragile than the Fertile Crescent’s, allowing China still to support productive intensive agriculture after nearly 10,000 years, though its environmental problems are increasing today and are more serious than western Europe’s.

  These advantages and head start enabled medieval China to lead the world in technology. The long list of its major technological firsts includes cast iron, the compass, gunpowder, paper, printing, and many others mentioned earlier. It also led the world in political power, navigation, and control of the seas. In the early 15th century it sent treasure fleets, each consisting of hundreds of ships up to 400 feet long and with total crews of up to 28,000, across the Indian Ocean as far as the east coast of Africa, decades before Columbus’s three puny ships crossed the narrow Atlantic Ocean to the Americas’ east coast. Why didn’t Chinese ships proceed around Africa’s southern cape westward and colonize Europe, before Vasco da Gama’s own three puny ships rounded the Cape of Good Hope eastward and launched Europe’s colonization of East Asia? Why didn’t Chinese ships cross the Pacific to colonize the Americas’ west coast? Why, in brief, did China lose its technological lead to the formerly so backward Europe?

  The end of China’s treasure fleets gives us a clue. Seven of those fleets sailed from China between A.D. 1405 and 1433. They were then suspended as a result of a typical aberration of local politics that could happen anywhere in the world: a power struggle between two factions at the Chinese court (the eunuchs and their opponents). The former faction had been identified with sending and captaining the fleets. Hence when the latter faction gained the upper hand in a power struggle, it stopped sending fleets, eventually dismantled the shipyards, and forbade oceangoing shipping. The episode is reminiscent of the legislation that strangled development of public electric lighting in London in the 1880s, the isolationism of the United States between the First and Second World Wars, and any number of backward steps in any number of countries, all motivated by local political issues. But in China there was a difference, because the entire region was politically unified. One decision stopped fleets over the whole of China. That one temporary decision became irreversible, because no shipyards remained to turn out ships that would prove the folly of that temporary decision, and to s
erve as a focus for rebuilding other shipyards.

  Now contrast those events in China with what happened when fleets of exploration began to sail from politically fragmented Europe. Christopher Columbus, an Italian by birth, switched his allegiance to the duke of Anjou in France, then to the king of Portugal. When the latter refused his request for ships in which to explore westward, Columbus turned to the duke of Medina-Sedonia, who also refused, then to the count of Medina-Celi, who did likewise, and finally to the king and queen of Spain, who denied Columbus’s first request but eventually granted his renewed appeal. Had Europe been united under any one of the first three rulers, its colonization of the Americas might have been stillborn.

  In fact, precisely because Europe was fragmented, Columbus succeeded on his fifth try in persuading one of Europe’s hundreds of princes to sponsor him. Once Spain had thus launched the European colonization of America, other European states saw the wealth flowing into Spain, and six more joined in colonizing America. The story was the same with Europe’s cannon, electric lighting, printing, small firearms, and innumerable other innovations: each was at first neglected or opposed in some parts of Europe for idiosyncratic reasons, but once adopted in one area, it eventually spread to the rest of Europe.

  These consequences of Europe’s disunity stand in sharp contrast to those of China’s unity. From time to time the Chinese court decided to halt other activities besides overseas navigation: it abandoned development of an elaborate water-driven spinning machine, stepped back from the verge of an industrial revolution in the 14th century, demolished or virtually abolished mechanical clocks after leading the world in clock construction, and retreated from mechanical devices and technology in general after the late 15th century. Those potentially harmful effects of unity have flared up again in modern China, notably during the madness of the Cultural Revolution in the 1960s and 1970s, when a decision by one or a few leaders closed the whole country’s school systems for five years.

  China’s frequent unity and Europe’s perpetual disunity both have a long history. The most productive areas of modern China were politically joined for the first time in 221 B.C. and have remained so for most of the time since then. China has had only a single writing system from the beginnings of literacy, a single dominant language for a long time, and substantial cultural unity for two thousand years. In contrast, Europe has never come remotely close to political unification: it was still splintered into 1,000 independent statelets in the 14th century, into 500 statelets in A.D. 1500, got down to a minimum of 25 states in the 1980s, and is now up again to nearly 40 at the moment that I write this sentence. Europe still has 45 languages, each with its own modified alphabet, and even greater cultural diversity. The disagreements that continue today to frustrate even modest attempts at European unification through the European Economic Community (EEC) are symptomatic of Europe’s ingrained commitment to disunity.

  Hence the real problem in understanding China’s loss of political and technological preeminence to Europe is to understand China’s chronic unity and Europe’s chronic disunity. The answer is again suggested by maps (see Backmatter). Europe has a highly indented coastline, with five large peninsulas that approach islands in their isolation, and all of which evolved independent languages, ethnic groups, and governments: Greece, Italy, Iberia, Denmark, and Norway / Sweden. China’s coastline is much smoother, and only the nearby Korean Peninsula attained separate importance. Europe has two islands (Britain and Ireland) sufficiently big to assert their political independence and to maintain their own languages and ethnicities, and one of them (Britain) big and close enough to become a major independent European power. But even China’s two largest islands, Taiwan and Hainan, have each less than half the area of Ireland; neither was a major independent power until Taiwan’s emergence in recent decades; and Japan’s geographic isolation kept it until recently much more isolated politically from the Asian mainland than Britain has been from mainland Europe. Europe is carved up into independent linguistic, ethnic, and political units by high mountains (the Alps, Pyrenees, Carpathians, and Norwegian border mountains), while China’s mountains east of the Tibetan plateau are much less formidable barriers. China’s heartland is bound together from east to west by two long navigable river systems in rich alluvial valleys (the Yangtze and Yellow Rivers), and it is joined from north to south by relatively easy connections between these two river systems (eventually linked by canals). As a result, China very early became dominated by two huge geographic core areas of high productivity, themselves only weakly separated from each other and eventually fused into a single core. Europe’s two biggest rivers, the Rhine and Danube, are smaller and connect much less of Europe. Unlike China, Europe has many scattered small core areas, none big enough to dominate the others for long, and each the center of chronically independent states.

  Once China was finally unified, in 221 B.C., no other independent state ever had a chance of arising and persisting for long in China. Although periods of disunity returned several times after 221 B.C., they always ended in reunification. But the unification of Europe has resisted the efforts of such determined conquerors as Charlemagne, Napoleon, and Hitler; even the Roman Empire at its peak never controlled more than half of Europe’s area.

  Thus, geographic connectedness and only modest internal barriers gave China an initial advantage. North China, South China, the coast, and the interior contributed different crops, livestock, technologies, and cultural features to the eventually unified China. For example, millet cultivation, bronze technology, and writing arose in North China, while rice cultivation and cast-iron technology emerged in South China. For much of this book I have emphasized the diffusion of technology that takes place in the absence of formidable barriers. But China’s connectedness eventually became a disadvantage, because a decision by one despot could and repeatedly did halt innovation. In contrast, Europe’s geographic balkanization resulted in dozens or hundreds of independent, competing statelets and centers of innovation. If one state did not pursue some particular innovation, another did, forcing neighboring states to do likewise or else be conquered or left economically behind. Europe’s barriers were sufficient to prevent political unification, but insufficient to halt the spread of technology and ideas. There has never been one despot who could turn off the tap for all of Europe, as of China.

  These comparisons suggest that geographic connectedness has exerted both positive and negative effects on the evolution of technology. As a result, in the very long run, technology may have developed most rapidly in regions with moderate connectedness, neither too high nor too low. Technology’s course over the last 1,000 years in China, Europe, and possibly the Indian subcontinent exemplifies those net effects of high, moderate, and low connectedness, respectively.

  Naturally, additional factors contributed to history’s diverse courses in different parts of Eurasia. For instance, the Fertile Crescent, China, and Europe differed in their exposure to the perennial threat of barbarian invasions by horse-mounted pastoral nomads of Central Asia. One of those nomad groups (the Mongols) eventually destroyed the ancient irrigation systems of Iran and Iraq, but none of the Asian nomads ever succeeded in establishing themselves in the forests of western Europe beyond the Hungarian plains. Environmental factors also include the Fertile Crescent’s geographically intermediate location, controlling the trade routes linking China and India to Europe, and China’s more remote location from Eurasia’s other advanced civilizations, making China a gigantic virtual island within a continent. China’s relative isolation is especially relevant to its adoption and then rejection of technologies, so reminiscent of the rejections on Tasmania and other islands (Chapters 13 and 15). But this brief discussion may at least indicate the relevance of environmental factors to smaller-scale and shorter-term patterns of history, as well as to history’s broadest pattern.

  The histories of the Fertile Crescent and China also hold a salutary lesson for the modern world: circumstances change, and past p
rimacy is no guarantee of future primacy. One might even wonder whether the geographical reasoning employed throughout this book has at last become wholly irrelevant in the modern world, now that ideas diffuse everywhere instantly on the Internet and cargo is routinely airfreighted overnight between continents. It might seem that entirely new rules apply to competition between the world’s peoples, and that as a result new powers are emerging—such as Taiwan, Korea, Malaysia, and especially Japan.

  On reflection, though, we see that the supposedly new rules are just variations on the old ones. Yes, the transistor, invented at Bell Labs in the eastern United States in 1947, leapt 8,000 miles to launch an electronics industry in Japan—but it did not make the shorter leap to found new industries in Zaire or Paraguay. The nations rising to new power are still ones that were incorporated thousands of years ago into the old centers of dominance based on food production, or that have been repopulated by peoples from those centers. Unlike Zaire or Paraguay, Japan and the other new powers were able to exploit the transistor quickly because their populations already had a long history of literacy, metal machinery, and centralized government. The world’s two earliest centers of food production, the Fertile Crescent and China, still dominate the modern world, either through their immediate successor states (modern China), or through states situated in neighboring regions influenced early by those two centers (Japan, Korea, Malaysia, and Europe), or through states repopulated or ruled by their overseas emigrants (the United States, Australia, Brazil). Prospects for world dominance of sub-Saharan Africans, Aboriginal Australians, and Native Americans remain dim. The hand of history’s course at 8000 B.C. lies heavily on us.